Průvodce | Karpattreky | Horolezectví | Cykloturistika | Cestování | Lyžování | Příroda | Soutěže | Aktuality | Zajímavosti | Kalendář | Napsat článek | Reklama | Více… |
Treking.cz
Poslední aktualizace: 15.10.2024
Treking > Vesmír > Vzplanutí V883 Orionis odhalilo sněžnou čáru v protoplanetárním disku hvězdy

Vzplanutí V883 Orionis odhalilo sněžnou čáru v protoplanetárním disku hvězdy

Dramatické zvýšení jasnosti mladé hvězdy V883 Orionis

15.7.2016 | ESO 1626

ALMA (Atacama Large Millimeter/submillimeter Array) vůbec poprvé rozlišila tzv. sněžnou čáru v protoplanetárním disku. Tato hranice vymezuje oblast, kde teplota v disku poklesne dostatečně nízko, aby se z vodní páry mohl tvořit sníh. Dramatické zvýšení jasnosti mladé hvězdy V883 Orionis velmi rychle oteplilo vnitřní část disku a posunulo čáru sněhu do mnohem větší vzdálenosti, než je pro protohvězdy obvyklé. Díky tomu ji bylo možné vůbec poprvé přímo pozorovat. Výsledky pozorování jsou publikovány v časopise Nature, 14. července 2016.

Artist’s impression of the water snowline around the young star V883 Orionis

Mladé hvězdy jsou často obklopeny hustými rotujícími disky plynu a prachu, které označujeme jako protoplanetární disky, v nichž vznikají planety. Díky teplu z typické mladé hvězdy slunečního typu je voda v protoplanetárním disku v plynném stavu až do vzdálenosti 3 au od hvězdy [1] - asi tak třikrát průměrná vzdálenost mezi Zemí a Sluncem - neboli přibližně 450 milionů kilometrů [2].

Ve větších vzdálenostech, díky extrémně nízkému tlaku, přecházejí molekuly vody z plynného skupenství přímo do pevného a tvoří vrstvičku ledu na prachových a jiných částečkách. Oblast v protoplanetárním disku, kde dochází k přeměně plynného skupenství na pevné, je známá jako sněžná čára.

Čtěte také: Vzplanutí temných oblaků, oblaka kosmického prachu v Orionu

Ale hvězda V883 Orionis je neobvyklá. Dramatické zvýšení její jasnosti posunulo sněžnou čáru do vzdálenosti přibližně 40 au (okolo 6 miliard kilometrů, neboli přibližně velikost orbity trpasličí planety Pluta v naší Sluneční soustavě). Tento velký nárůst, spolu s rozlišením dalekohledu ALMA na velkých základnách [4] umožnil týmu, který vedl Lucas Cieza (Millennium ALMA Disk Nucleus and Universidad Diego Portales, Santiago, Chile), provést vůbec první rozlišené pozorování čáry vodního sněhu v protoplanetárním disku.

Shifting water snowline in V883 Orionis

Náhlé zjasnění, které si prožila V883 Orionis, je příkladem toho, co se stane, když na povrch mladé hvězdy dopadne velké množství materiálu z disku. V883 Orionis je jenom o 30 % hmotnější než Slunce, ale díky zmíněnému zvýšení jasnosti září v současnosti 400krát více a je také mnohem teplejší.

Hlavní autor Lucas Cieza vysvětluje: "Pozorování z dalekohledu ALMA bylo pro nás velkým překvapením. Naplánovali jsme pozorování fragmentace disku, které vede k tvorbě planet. Z toho jsme neviděli nic, naopak jsme našli něco, co vypadalo jako prstenec ve vzdálenosti 40 au. To krásně dokumentuje převratnou sílu přístroje ALMA, který poskytuje vzrušující výsledky pozorování, i když to zrovna nejsou ty, o které jste usilovali."

Bizarní představa sněhu obíhajícího v prostoru je důležitá pro tvorbu planet. Přítomnost vodního ledu reguluje efektivitu koagulace prachových zrn - první krok v tvorbě planet. V oblasti sněžné čáry umožňuje přítomnost vodního ledu rychlou tvorbu kosmických sněhových koulí, které případně pokračují v dalším zvětšování a mohou vzniknout hmotné plynné planety, jako je Jupiter.

ALMA image of the protoplanetary disc around V883 Orionis (annotated)

Objev, že vzplanutí hvězd mohou posunout sněžnou čáru do vzdálenosti desetkrát větší, než je obvyklá vzdálenost, je velmi důležitý i pro rozpracování modelů tvorby planet. Taková vzplanutí se pravděpodobně vyskytují v určitém období vývoje většiny planetárních soustav, takže tato první pozorování mohou být ve skutečnosti běžným jevem. V takovém případě mohou pozorování z dalekohledu ALMA významně přispět k lepšímu pochopení způsobu, jakým ve vesmíru vznikají a vyvíjejí se planety.

Poznámky

[1] 1 au, neboli astronomická jednotka, je střední vzdálenost mezi Zemí a Sluncem, okolo 149,6 milionů kilometrů. Tato jednotka se typicky používá k popisu vzdálenosti ve Sluneční soustavě a také v planetárních systémech okolo jiných hvězd.

[2] Tato čára byla během formování Sluneční soustavy mezi drahami Marsu a Jupitera, takže kamenné planety Merkur, Venuše, Země a Mars se formovaly uvnitř této hranice a plynné planety Jupiter, Saturn, Uran a Neptun vznikaly vně.

The star V883 Orionis in the constellation of Orion

[3] Sněžná čára pro jiné molekuly, třeba oxid uhelný nebo metan, byla dalekohledem ALMA pozorována už dříve, ve vzdálenosti větší než 30 au od protohvězdy v jiných protoplanetárních discích. Voda mrzne při relativně vysoké teplotě, což znamená, že čára vodního sněhu je obvykle příliš blízko k hvězdě, než aby šla pozorovat přímo.

[4] Rozlišení je schopnost odhalit, že objekty k sobě nepatří. Lidskému oku by se z větší vzdálenosti zdálo několik svítících loučí jako jedna zářící skvrna, zatímco z menší vzdálenosti bychom byli schopni určit, že se jedná o jednotlivé louče. Stejný princip se uplatňuje u dalekohledu. Popisovaná pozorování využila úžasné rozlišovací schopnosti dalekohledu ALMA při použití dlouhé základny. ALMA dokáže ve vzdálenosti V883 Orionis rozlišit 12 au - dost na to, aby viděla čáru sněhu na 40 au ve zjasněném systému, ale ne dost pro typickou hvězdu.

[5] Hvězdy jako V883 Orionis se řadí do skupiny hvězd FU Orionis podle první hvězdy, u které bylo toto chování pozorováno. Vzplanutí může trvat stovky let.

Další informace

Výsledky výzkumu byly publikovány v článku s názvem "Imaging the water snow-line during a protostellar outburst", autor L. Cieza et al., časopis Nature, 14. červenec 2016.

Složení pracovní skupiny: Lucas A. Cieza (Millennium ALMA Disk Nucleus; Universidad Diego Portales, Santiago, Chile), Simon Casassus (Universidad de Chile, Santiago, Chile), John Tobin (Leiden Observatory, Leiden University, Nizozemí), Steven Bos (Leiden Observatory, Leiden University, Nizozemí), Jonathan P. Williams (University of Hawaii at Manoa, Honolulu, Hawai`i, USA), Sebastian Perez (Universidad de Chile, Santiago, Chile), Zhaohuan Zhu (Princeton University, Princeton, New Jersey, USA), Claudio Cáceres (Universidad Valparaiso, Valparaiso, Chile), Hector Canovas (Universidad Valparaiso, Valparaiso, Chile), Michael M. Dunham (Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA), Antonio Hales (Joint ALMA Observatory, Santiago, Chile), Jose L. Prieto (Universidad Diego Portales, Santiago, Chile), David A. Principe (Universidad Diego Portales, Santiago, Chile), Matthias R. Schreiber (Universidad Valparaiso, Valparaiso, Chile), Dary Ruiz-Rodriguez (Australian National University, Mount Stromlo Observatory, Canberra, Austrálie) a Alice Zurlo (Universidad Diego Portales & Universidad de Chile, Santiago, Chile).

Astronomická observatoř ALMA (Atacama Large Millimeter/submillimeter Array) je mezinárodním partnerským projektem organizací ESO, NSF (US National Science Foundation) a NINS (National Institutes of Natural Sciences) v Japonsku ve spolupráci s Chilskou republikou. ALMA je za členské státy financována ESO, NSF ve spolupráci s NRC (National Research Council of Canada) a NSC (National Science Council of Taiwan) a NINS ve spolupráci s AS (Academia Sinica) na Taiwanu a KASI (Korea Astronomy and Space Science Institute) v Koreji.

Výstavba a provoz observatoře ALMA jsou ze strany Evropy řízeny ESO, ze strany Severní Ameriky NRAO (National Radio Astronomy Observatory), která je řízena AUI (Associated Universities, Inc.), a za východní Asii NAOJ (National Astronomical Observatory of Japan). Spojená observatoř ALMA (JAO, Joint ALMA Observatory) poskytuje jednotné vedení a řízení stavby, plánování a provoz teleskopu ALMA.

ESO je nejvýznamnější mezivládní astronomická organizace Evropy, která v současnosti provozuje jedny z nejproduktivnějších pozemních astronomických observatoří světa. ESO podporuje celkem 16 zemí: Belgie, Brazílie, Česká republika, Dánsko, Finsko, Francie, Itálie, Německo, Nizozemsko, Portugalsko, Rakousko, Španělsko, Švédsko, Švýcarsko, Velká Británie a hostící stát Chile. ESO uskutečňuje ambiciózní program zaměřený na návrh, konstrukci a provoz výkonných pozemních pozorovacích komplexů umožňujících astronomům dosáhnout významných vědeckých objevů. ESO také hraje vedoucí úlohu při podpoře a organizaci celosvětové spolupráce v astronomickém výzkumu. ESO provozuje tři unikátní pozorovací střediska světového významu nacházející se v Chile: La Silla, Paranal a Chajnantor. Na Observatoři Paranal, nejvyspělejší astronomické observatoři světa pro viditelnou oblast, pracuje Velmi velký dalekohled VLT a také dva další přehlídkové teleskopy - VISTA a VST. Dalekohled VISTA pozoruje v infračervené části spektra a je největším přehlídkovým teleskopem na světě, dalekohled VST je největším teleskopem navrženým k prohlídce oblohy ve viditelné oblasti spektra. ESO je významným partnerem revolučního astronomického teleskopu ALMA, největšího astronomického projektu současnosti. Nedaleko Paranalu v oblasti Cero Armazones staví ESO nový dalekohled E-ELT (European Extremely Large optical/near-infrared Telescope), který se stane "největším okem hledícím do vesmíru".

Odkazy

Kontakty

Lucas Cieza
Universidad Diego Portales
Santiago, Chile
Tel.: +56 22 676 8154
Mobil: +56 95 000 6541
Email: lucas.cieza@mail.udp.cl

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel.: +49 89 3200 6655
Mobil: +49 151 1537 3591
Email: rhook@eso.org

Hory Starohorské vrchy křížem krážem, dvoudenní túra po…

Starohorské vrchy jako soused mnohem známější Velké Fatry resp. Nízkých Tater stojí tak trochu…

Hory Na Elbrus přes Pik Terskol, výstup na nejvyšší horu Kavkazu…

"Ne! Nechci si to ulehčovat, ani náhodou! Do lanovky mě nikdo nedostane, takový kopec by mě ani…

Hory Klima v době ledové v České republice, vrcholná fáze…

Poslední doba ledová (tzv. würmský či viselský glaciál, podle toho hovoříme-li o alpínském a nebo…

Hory Toulání v Bílých Karpatech, trojdenní putování částí…

Bílé Karpaty jsou pohoří táhnoucí se podél česko - slovenské hranice, konkrétně od měst Púchov či…

Další související články:

+ Hvězdné asociace: OB asociace, T a R asociace
+ Dalekohled VLT osvětluje záhadu kosmického prachu
+ Barnard 86, kaňka na zářící hvězdné obloze
+ IC 2177 mlhovina Racek aneb na křídlech racka
+ Barevný vesmír - neuvěřitelné fotografie z vesmíru
+ Obrazy z vesmíru, mlhovina M 42 v Orionu
+ Prachové pásy reflexní mlhoviny M 78 v novém světle
+ Hvězda s chvostem, neočekávaný objev
+ Nejtěžší známá hvězda ve vesmíru
Reklama
Témata našich článků…
Maroko Slovenský ráj, ubytování Furkotka Domica Hazmburk Švýcárna Chata Terezka Lietava Hluboká Macocha Starý Jičín Vilcan Kadovský viklan Souhvězdí Lyra Osoblažsko Bernina Bezděz Blesk Motýli Měsíc Batohy Viklany
Reklama
Regiony
Beskydy | Bílé Karpaty | Blatenská pahorkatina | Brdy | Broumovská vrchovina | Česká Kanada | České středohoří | České Švýcarsko | Český les | Český ráj | Děčínská vrchovina | Doupovské hory | Drahanská vrchovina | Džbán | Hanušovická vrchovina | Hornosvratecká vrchovina | Hostýnské vrchy | Chřiby | Javorníky | Jeseníky | Ještědsko-kozákovský hřbet | Jevišovická pahorkatina | Jizerské hory | Králický Sněžník | Krkonoše | Krušné hory | Křemešnická vrchovina | Křivoklátská vrchovina | Litenčická pahorkatina | Lužické hory | Nízký Jeseník | Novohradské hory | Orlické hory | Pálava | Podbeskydská pahorkatina | Podyjí | Rakovnická pahorkatina | Ralsko | Rychlebské hory | Slavkovský les | Slezské Beskydy | Smrčiny | Svitavská pahorkatina | Šluknovská pahorkatina | Šumava | Švihovská vrchovina | Vizovická vrchovina | Vlašimská pahorkatina | Vsetínské vrchy | Východolabská tabule | Zábřežská vrchovina | Zlatohorská vrchovina | Ždánický les | Železné hory | Žulovská pahorkatina | Belianské Tatry | Branisko | Bukovské vrchy | Burda | Cerová vrchovina | Čergov | Čierna hora | Chočské vrchy | Kremnické vrchy | Krupinská planina | Kysucké Beskydy | Laborecká vrchovina | Levočské vrchy | Ľubovnianska vrchovina | Malá Fatra | Malé Karpaty | Muránska planina | Myjavská pahorkatina | Nízké Tatry | Ondavská vrchovina | Oravská Magura | Oravské Beskydy | Ostrôžky | Pieniny | Podunajská pahorkatina | Pohronský Inovec | Polana | Považský Inovec | Revúcka vrchovina | Roháče | Slanské vrchy | Slovenský kras | Slovenský ráj | Spišská Magura | Beskydy | Stolické vrchy | Strážovské vrchy | Starohorské vrchy | Šarišská vrchovina | Štiavnické vrchy | Tribeč | Velká Fatra | Veporské vrchy | Vihorlat | Volovské vrchy | Vtáčnik | Vysoké Tatry | Východoslovenská rovina | Zemplínské vrchy | Žiar
Reklama
Vybíráme z obsahu…
1. Skály Pravčická brána - největší skalní brána Evropy, Jetřichovické stěny
2. Tipy na výlet Černé jezero je držitelem řady rekordů, Šumava
3. Naše vrcholy Velká Javořina, nejvyšší hora Bílých Karpat
4. Chaty Téryho chata, Vysoké Tatry, cena a recenze ubytování na Téryho chatě
5. Vesmír Planckova konstanta, univerzální fyzikální konstanta
6. České hrady Hrad Bouzov, perla Moravy a střední Evropy, patřil řádu německých rytířů
7. České hrady Sirotčí hrádek, po stopách hradů na Pálavě
Reklama
Služby Horská seznamka Outdoor bazar Ztráty a nálezy Archiv článků Spolupracujeme Počasí Satelitní snímky Fotogalerie Turistická mapa Kalendář turistických akcí Treky České hory Slovenské hory Alpy Karpattreky Rumunské hory Ukrajinské Karpaty Asijské hory Severské země Turistika s dětmi Balkánské a evropské hory Ubytování Horské chaty, české hory Slovenské chaty Penziony, hotely Ubytování online Alpské chaty České kempy Slovenské kempy Chorvatské kempy Kempy, Slovinsko Ukrajina, Rumunské hory Výlety Skalní města a skály Naše vrcholy Rozhledny České hrady Slovenské hrady Jeskyně Vodopády Sedla a doliny Členění Slovenska Geomorfologické členění ČR Výlety Přehled našich pohoří Sopky v ČR Karpaty Alpy Ledovcová jezera Památky a zámky Větrné mlýny Čedičové varhany Viklany Bludné (eratické) balvany Ostatní Cestování, cestopisy Horolezectví Cykloturistika Snow Soutěže Příroda, fauna a flóra Vesmír, astronomie Produkty Testujeme Outdoor vybavení, poradna
TOPlist