Průvodce | Karpattreky | Horolezectví | Cykloturistika | Cestování | Lyžování | Příroda | Soutěže | Aktuality | Zajímavosti | Kalendář | Napsat článek | Reklama | Více… |
Treking.cz
Poslední aktualizace: 7.10.2024
Treking > Vesmír > Záhada kosmického prachu v okolí supernovy SN 2010jl pozorované v UGC 5189A

Záhada kosmického prachu v okolí supernovy SN 2010jl pozorované v UGC 5189A

Nová pozorování odhalila jakým způsobem probíhá formování hvězdného prachu

9.7.2014 | ESO 1421

Tým astronomů sledoval v přímém přenosu vznik hvězdného prachu - jako následek výbuchu supernovy. Poprvé se jim tak podařilo ukázat, že tvorba kosmického prachu probíhá ve dvou fázích - začíná krátce po samotné explozi, ale trvá po mnoho následujících let. K analýze světla přicházejícího ze supernovy SN 2010jl ve fázi slábnutí astronomové použili dalekohled ESO/VLT, který pracuje v severním Chile. Výsledky byly publikovány ve vědeckém časopise Nature 9. července 2014.

Trpasličí galaxie UGC 5189A, místo exploze supernovy SN 2010jl

Původ kosmického prachu v galaxiích je stále záhadou [1]. Astronomové však vědí, že jeho primárním zdrojem, především v mladém vesmíru, by mohly být supernovy. Není však jasné kde a jak prachová zrna kondenzují a narůstají. Také není známo, jakým způsobem uniknou destrukci v drsném prostření galaxie s probíhajícím vznikem hvězd. Nová pozorování provedená dalekohledem ESO/VLT na observatoři Paranal však pomáhají tuto záhadu vyřešit.

Mezinárodní tým astronomů použil spektrograf X-shooter k pozorování supernovy známé pod označením SN 2010jl. Během několika měsíců pořídili devět sad pozorování ve viditelné i blízké infračervené oblasti [2] a poslední desátou sadu pak získali celého 2,5 roku po výbuchu. Tato neobvykle jasná supernova (výbuch v závěrečné fázi vývoje velmi hmotné hvězdy) explodovala v malé galaxii s označením UGC 5189A.

Čtěte také: Drama vzniku hvězd detailním pohledem

"Kombinací dat s předchozích devíti sérií se nám podařilo poprvé přímo změřit, jak prach v okolí supernovy absorbuje rozdílné vlnové délky záření," říká hlavní autorka článku Christa Gall (Aarhus University, Dánsko). "To nám umožnilo o částicích prachu zjistit více informací, než bylo dříve možné."

Vědci objevili, že formování prachových částic začíná krátce po samotném výbuchu a trvá po dlouhou dobu. Nová měření také odhalila, jak velká prachová zrnka jsou a z čeho se skládají. Tento objev je však o krok zpět za nedávno publikovanými výsledky získanými pomocí radioteleskopu ALMA (Atacama Large Millimeter/submillimeter Array), kterému se jako prvnímu podařilo detekovat oblak čerstvě zformovaných prachových částic v okolí slavné supernovy SN 1987A (SN 1987A; eso1401).

Zjistili také, že prachová zrna o průměru větším než tisícina milimetru vznikla velmi rychle v husté hmotě obklopující hvězdu. Ačkoli z pohledu běžných lidských měřítek jsou tato zrnka stále drobounká, na částice kosmického prachu je tento rozměr překvapivě velký, a díky tomu jsou tyto částice odolné vůči řadě destruktivních procesů.

Představa vzniku prachu v okolí supernovy

A právě to, jak částice prachu mohou přežít v bouřlivém a nebezpečném prostředí, které nacházíme v pozůstatcích po explozi supernovy, bylo jednou z hlavních otevřených otázek v článku publikovaném na základě pozorování pomocí ALMA. Tyto výsledky poskytují hledanou odpověď - zrnka jsou větší než se předpokládalo.

"Naše pozorování větších prachových částic krátce po explozi supernovy znamená, že zde musí existovat nějaký rychlý a efektivní proces, jak taková zrnka vytvořit," říká spoluautor článku Jens Hjorth (Niels Bohr Institute of the University of Copenhagen, Dánsko). A dodává: "Skutečně přesně nevíme, jak k tomu dochází."

Astronomové se však domnívají, že vědí, kde se nový prach musel vzít: v hmotě, kterou hvězda vyvrhla do svého okolí ještě před samotnou explozí. Jak se prostorem rozšiřuje rázová vlna supernovy, vzniká chladná a hustá plynová obálka - a to je přesně typ prostředí, kde prachová zrnka mohou vznikat a narůstat.

Výsledky pozorování také ukazují, že v další fázi - po několika stovkách dnů - dochází k dalšímu urychlenému procesu formování prachu v materiálu vyvrženém samotnou supernovou. Pokud by produkce prachu v pozůstatcích po supernově SN 2010jl pokračovala s pozorovaným trendem po následujících 25 let, celkem by vzniklo množství prachu odpovídající polovině hmotnosti Slunce, což je porovnatelné s množstvím prachu pozorovaným u jiných supernov jako třeba u SN 1987A.

"Astronomové v minulosti nalézali velké množství prachu v pozůstatcích po supernovách. Ale zároveň nacházeli důkazy vzniku jen malého množství prachu při samotných explozích supernovy. Tato mimořádná nová pozorování umožňují tento zdánlivý rozpor vysvětlit," dodává Christa Gall.

Poznámky

[1] Kosmický prach se skládá ze zrn tvořených křemíkem a amorfním uhlíkem - což jsou minerály hojně se vyskytující i na Zemi. Uhlíkový kosmický prach se podobá sazím ze svíčky, částice sazí jsou však asi desetkrát (i vícekrát) větší, než je typická velikost zrn kosmického prachu.

[2] Záření této supernovy bylo poprvé zaznamenáno v roce 2010, což indikuje označení SN 2010jl. Supernova byla klasifikována jako typ IIn. Supernovy typu II jsou důsledkem exploze hmotné hvězdy (o hmotnosti minimálně 8krát větší než Slunce). Pod-kategorie "n" značí supernovy s úzkými čarami vodíku ve spektru (n, narrow = úzký). Tyto čáry vznikají při interakci mezi hmotou vyvrženou supernovou a materiálem obklopujícím hvězdu.

Další informace

Výzkum byl prezentován v článku "Rapid formation of large dust grains in the luminous supernova SN 2010jl" autorů C. Gall a kol., který byl publikován ve vědeckém časopise Nature 9. července 2014.

Složení týmu: Christa Gall (Department of Physics and Astronomy, Aarhus University, Dánsko; Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Dánsko; Observational Cosmology Lab, NASA Goddard Space Flight Center, USA), Jens Hjorth (Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Dánsko), Darach Watson (Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Dánsko), Eli Dwek (Observational Cosmology Lab, NASA Goddard Space Flight Center, USA), Justyn R. Maund (Astrophysics Research Centre School of Mathematics and Physics Queen's University Belfast, UK; Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Dánsko; Department of Physics and Astronomy, University of Sheffield, UK), Ori Fox (Department of Astronomy, University of California, Berkeley, USA), Giorgos Leloudas (The Oskar Klein Centre, Department of Physics, Stockholm University, Švédsko; Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Dánsko), Daniele Malesani (Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Dánsko) a Avril C. Day-Jones (Departamento de Astronomia, Universidad de Chile, Chile).

ESO je nejvýznamnější mezivládní astronomická organizace Evropy a v současnosti nejproduktivnější pozemní astronomická observatoř. ESO podporuje celkem 15 členských zemí: Belgie, Brazílie, Česká republika, Dánsko, Finsko, Francie, Itálie, Německo, Nizozemsko, Portugalsko, Rakousko, Španělsko, Švédsko, Švýcarsko a Velká Británie.

ESO uskutečňuje ambiciózní program zaměřený na návrh, konstrukci a úspěšný chod výkonných pozemních pozorovacích komplexů umožňujících astronomům dosáhnout významných vědeckých objevů. ESO také vedoucí úlohu při podpoře a organizaci spolupráce v astronomickém výzkumu.

ESO provozuje tři unikátní pozorovací střediska světového významu nacházející se v Chile: La Silla, Paranal a Chajnantor. Na Observatoři Paranal provozuje Velmi velký teleskop (VLT), což je nejvyspělejší astronomická observatoř pro viditelnou oblast světla, a také dva další přehlídkové teleskopy. VISTA pracuje v infračervené části spektra a je největším přehlídkovým dalekohledem na světě, dalekohled VST (VLT Survey Telescope) je největším teleskopem navrženým k prohlídce oblohy výhradně ve viditelné části spektra.

ESO je evropským partnerem revolučního astronomického teleskopu ALMA, největšího astronomického projektu současnosti. Pro viditelnou a blízkou infračervenou oblast ESO rovněž plánuje nový dalekohled E-ELT (European Extremely Large optical/near-infrared Telescope) s primárním zrcadlem o průměru 39 metrů, který se stane "největším okem do vesmíru".

Odkazy

Kontakty

Viktor Votruba
národní kontakt
Astronomický ústav AV ČR, 251 65 Ondřejov, Česká republika
Email: votruba@physics.muni.cz

Jiří Srba
překlad
Hvězdárna Valašské Meziříčí, p. o., Česká republika
Email: jsrba@astrovm.cz

Christa Gall
Aarhus University
Denmark
Mobil: +45 53 66 20 18
Email: cgall@phys.au.dk

Jens Hjorth
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen
Copenhagen, Denmark
Email: jens@dark-cosmology.dk

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany
Tel.: +49 89 3200 6655
Email: rhook@eso.org

Toto je překlad tiskové zprávy ESO eso1421. ESON -- ESON (ESO Science Outreach Network) je skupina spolupracovníku z jednotlivých členských zemí ESO, jejichž úkolem je sloužit jako kontaktní osoby pro lokální média.

Další související články:

+ Obzvláště nesourodý pár, dva různé oblaky plynu v nedaleké galaxii
+ Galaxie, vesmírné hvězdné ostrovy
+ Barnard 86, kaňka na zářící hvězdné obloze
+ IC 2177 mlhovina Racek aneb na křídlech racka
+ Směsice exotických hvězd, nový snímek hvězdokupy 47 Tucanae dalekohledem VISTA
+ Barevný vesmír - neuvěřitelné fotografie z vesmíru
+ Obrazy z vesmíru, mlhovina M 42 v Orionu
+ Prachové pásy reflexní mlhoviny M 78 v novém světle
+ Nejtěžší známá hvězda ve vesmíru
Reklama
Výběr článků
Hory Pekelný přechod Slezských Beskyd - Velký Stožek, Barania Góra a Skrzyczne
Hory Hřebenovka Bílých Karpat. Ze Skalice po hřebeni Bílých Karpat do Střelné
Hory Přechod Zlatohorské vrchoviny. Trek malebnými, ale opuštěnými horami
Reklama
Témata našich článků…
Český ráj Vysoké Tatry, ubytování Chata na Šerlichu Šomoška Hukvaldy Zbojnícka chata Krížna Jeseníky, ubytování Vtáčnik Praděd Sovinec Maroko Roháče Sluneční erupce Sivá brada Piz Bernina Pieniny Blesk Veporské vrchy Jeskyně Na Turoldu Batohy Hrad Hazmburk
Reklama
Doporučujeme ke čtení

Vliv větru na pocitovou teplotu, tabulka pro přepočet

Vítr patří k základním meteorologickým jevům. Vánek či slabý vítr je v letních parnech vítaným společníkem. Silnější vítr může být vítaným společníkem při chůzi nebo drápání se do kopce za předpokladu, že fouká po…

Solární nabíječky pro turistiku a treking - luxus nebo nezbytnost?

Hory

Solární nabíječky se v outdooru objevily poměrně nedávno. Se stále častějším používáním GPS, digitálních fotoaparátů…

Populární treky
1. Slovenské hory Baraniarky a Kraviarske, podzimní balada modré hřebenovky
2. České hory Ledopády v Pulčínských skalách; návštěva Pulčínských skal a ledopádů aneb úskalí turistiky na Valašsku
3. Rumunské Karpaty Maramureš, Suhard, Rodna a Sapinta, Sighet (1) - trek po hřebenech rumunských Karpat
4. České hory Králický Sněžník, procházka nad mraky - z Dolní Moravy k vrcholu Králického Sněžníku
5. Slovenské hory Roklinou Suchá Belá, Slovenský ráj a turistické trasy
Reklama
Regiony
Beskydy | Bílé Karpaty | Blatenská pahorkatina | Brdy | Broumovská vrchovina | Česká Kanada | České středohoří | České Švýcarsko | Český les | Český ráj | Děčínská vrchovina | Doupovské hory | Drahanská vrchovina | Džbán | Hanušovická vrchovina | Hornosvratecká vrchovina | Hostýnské vrchy | Chřiby | Javorníky | Jeseníky | Ještědsko-kozákovský hřbet | Jevišovická pahorkatina | Jizerské hory | Králický Sněžník | Krkonoše | Krušné hory | Křemešnická vrchovina | Křivoklátská vrchovina | Litenčická pahorkatina | Lužické hory | Nízký Jeseník | Novohradské hory | Orlické hory | Pálava | Podbeskydská pahorkatina | Podyjí | Rakovnická pahorkatina | Ralsko | Rychlebské hory | Slavkovský les | Slezské Beskydy | Smrčiny | Svitavská pahorkatina | Šluknovská pahorkatina | Šumava | Švihovská vrchovina | Vizovická vrchovina | Vlašimská pahorkatina | Vsetínské vrchy | Východolabská tabule | Zábřežská vrchovina | Zlatohorská vrchovina | Ždánický les | Železné hory | Žulovská pahorkatina | Belianské Tatry | Branisko | Bukovské vrchy | Burda | Cerová vrchovina | Čergov | Čierna hora | Chočské vrchy | Kremnické vrchy | Krupinská planina | Kysucké Beskydy | Laborecká vrchovina | Levočské vrchy | Ľubovnianska vrchovina | Malá Fatra | Malé Karpaty | Muránska planina | Myjavská pahorkatina | Nízké Tatry | Ondavská vrchovina | Oravská Magura | Oravské Beskydy | Ostrôžky | Pieniny | Podunajská pahorkatina | Pohronský Inovec | Polana | Považský Inovec | Revúcka vrchovina | Roháče | Slanské vrchy | Slovenský kras | Slovenský ráj | Spišská Magura | Beskydy | Stolické vrchy | Strážovské vrchy | Starohorské vrchy | Šarišská vrchovina | Štiavnické vrchy | Tribeč | Velká Fatra | Veporské vrchy | Vihorlat | Volovské vrchy | Vtáčnik | Vysoké Tatry | Východoslovenská rovina | Zemplínské vrchy | Žiar
Služby Horská seznamka Outdoor bazar Ztráty a nálezy Archiv článků Spolupracujeme Počasí Satelitní snímky Fotogalerie Turistická mapa Kalendář turistických akcí Treky České hory Slovenské hory Alpy Karpattreky Rumunské hory Ukrajinské Karpaty Asijské hory Severské země Turistika s dětmi Balkánské a evropské hory Ubytování Horské chaty, české hory Slovenské chaty Penziony, hotely Ubytování online Alpské chaty České kempy Slovenské kempy Chorvatské kempy Kempy, Slovinsko Ukrajina, Rumunské hory Výlety Skalní města a skály Naše vrcholy Rozhledny České hrady Slovenské hrady Jeskyně Vodopády Sedla a doliny Členění Slovenska Geomorfologické členění ČR Výlety Přehled našich pohoří Sopky v ČR Karpaty Alpy Ledovcová jezera Památky a zámky Větrné mlýny Čedičové varhany Viklany Bludné (eratické) balvany Ostatní Cestování, cestopisy Horolezectví Cykloturistika Snow Soutěže Příroda, fauna a flóra Vesmír, astronomie Produkty Testujeme Outdoor vybavení, poradna
TOPlist